NEC 304

STLD

Lecture 21 Analyzing Sequential Circuits

Rajeev Pandey Department Of ECE rajeevvce2007@gmail.com

Overview

° Understanding flip flop state:

Stored values inside flip flops

° Clocked sequential circuits:

Contain flip flops

° Representations of state:

- State equations
- State table
- State diagram

° Finite state machines

- Mealy machine
- Moore machine

Flip Flop State

 Behavior of clocked sequential circuit can be determined from inputs, outputs and FF state

$$y(t) = x(t)Q_1(t)Q_0(t)$$

$$Q_0(t+1) = D_0(t) = x(t)Q_1(t)$$

$$Q_1(t+1) = D_1(t) = x(t) + Q_0(t)$$

Output and State Equations

° Next state dependent on previous state.

State Table

- Sequence of outputs, inputs, and flip flop states enumerated in state table
- Present state indicates current value of flip flops
- Next state indicates state after next rising clock edge
- [°] **Output** is output value on current clock edge

State Table

- ° All possible input combinations enumerated
- ° All possible state combinations enumerated
- $^\circ$ Separate columns for each output value.
- ° Sometimes easier to designate a symbol for each state.

	Present	Next State		Output	
Let	State	x=0	x=1	x=0	x=1
$s_0 = 00$	S ₀	S_0	S ₂	0	0
$s_1 = 01$	S ₁	S ₂	S ₂	0	0
s ₂ = 10	S_2	S_0	S ₃	0	0
s ₃ = 11	S ₃	S ₂	S ₃	0	1

State Diagram

- ° Circles indicate current state
- Arrows point to next state
- $^{\circ}$ For x/y, x is input and y is output

State Diagram

- ° Each state has two arrows leaving
 - ° One for x = 0 and one for x = 1
- [°] Unlimited arrows can enter a state
- ° Note use of state names in this example
 - ° Easier to identify

Flip Flop Input Equations

° Boolean expressions which indicate the input to the flip flops.

 $D_{Q0} = xQ_1$ $D_{Q1} = x + Q_0$

Format implies type of flop used

Analysis with D Flip-Flops

- Identify flip flop input equations
- Identify output equation

Mealy Machine

Output based on state and present input

Moore Machine

Output based on state only

Mealy versus Moore

Mealy Model

Moore Model

State Diagram with One Input & One Mealy Output

- ° Mano text focuses on Mealy machines
- ° State transitions are shown as a function of inputs and current outputs.

State Diagram with One Input & a *Moore* Output

- Moore machine: outputs only depend on the current state
- Outputs cannot change during a clock pulse if the input variables change
- [°] Moore Machines usually have more states.
- ° No direct path from inputs to outputs
- ° Can be more reliable

Clocked Synchronous State-machine Analysis – next class

Given the circuit diagram of a state machine:

- Analyze the combinational logic to determine flip-flop input (excitation) equations: D_i = F_i (Q, inputs)
 - The input to each flip-flop is based upon current state and circuit inputs.
- 2 Substitute excitation equations into flip-flop characteristic equations, giving transition equations: $Q_i(t+1) = H_i(D_i)$
- **3** From the circuit, find output equations: **Z** = **G** (**Q**, inputs)
 - The outputs are based upon the current state and possibly the inputs.
- 4 Construct a state transition/output table from the transition and output equations:
 - Similar to truth table.
 - Present state on the left side.
 - Outputs and next state for each input value on the right side.
 - Provide meaningful names for the states in state table, if possible.

5 Draw the state diagram which is the graphical representation of state table.

Summary

- ° Flip flops contain state information
- ° State can be represented in several forms:
 - State equations
 - State table
 - State diagram

° Possible to convert between these forms

- ° Circuits with state can take on a finite set of values
 - Finite state machine
- ° Two types of "machines"
 - Mealy machine
 - Moore machine